
Physics , Condensed Matter
Homework 

Due Tuesday, th September 

Jacob Lewis Bourjaily

Problem 1
We are asked to study the penetration of normally incident, linearly polarized—with polarization

parallel to the surface—electromagnetic radiation into a conductor using the Drude model. Let the
surface be located at z = 0, with z > 0 vacuum and z ≤ 0 be a conductor. We may assume that the
relaxation rate is large relative to the plasma frequency, so ωpτ À 1, and that the plasma frequency is
large relative to the incident radiation, ωωp ¿ 1; we should allow ωτ to be arbitrary.

a) Let us first consider the limit of a free electron plasma, where 1/τ → 0. We are to solve for the
full pattern of the electric field both within and without the conductor, calculate the skin depth, and
determine quantitative skin depth in this approximation for visible light at 6×1014Hz incident on copper.

We begin by reminding ourselves of some simple electrodynamics learned by rote long ago
when we took Jackson: for light incident on a surface at z = 0, with outward normal
~n, the conditions to be imposed at the boundary are that the normal components of
B and D and the tangential components of E and H are continuous. If we express
the fields in question as

Ein = Re
{

x̂Eine−i(kẑ+ωt)
}

Eni = Re
{

x̂Enie
i(kẑ−ωt)

}
Er = Re

{
x̂Ere

−i(k′ẑ+ωt)
}

, (a.1)

where Eni is the reflected wave and the others are self-evident, then making use of
Maxwell’s equations to relate Bi to Ei then we find these boundary conditions—the
ones for E and H—imply that

(Ein + Eni −Er) ∧ ~n = 0 =⇒ Er = Ein + Eni; (a.2)
(
~k ∧Ein − ~k ∧Eni − ~k′ ∧Er

)
∧ ~n = 0 =⇒ k′Er = k (Ein − Eni) . (a.3)

Now, Maxwell’s equations give us −∇2E = ω2

c2 ε(ω)E, so k = ω
c in the vacuum and

k′ = ω
c

√
ε in the medium. This allows us to solve the boundary conditions above

rather straight-forwardly in no more than a couple of lines of algebra:

Eni = Ein
1−√ε

1 +
√

ε
and Er = Ein

2
1 +

√
ε
. (a.4)

After the above preliminaries, we are ready to perform the more specific challenges of
the problem. We can easily find the limit of the expression for ε(ω) predicted by the
Drude model when 1/τ → 0:

ε(ω) = 1 +
4πine2τ

mω(1− iωτ)
,

= 1 +
4πine2

mω (1/τ − iω)
,

−→
q/τ→0

1− 4πne2

mω
.

For much of the range of light frequency1, this is a negative, real-valued dielectric con-
stant, which means that light essentially does not penetrate the surface. To see this,
recall that k′ =

√
ε, so if ε is real and negative k′ is pure imaginary, which means

that the strength of the refracted wave dies exponentially inside the surface. This
exactly follows our intuition about plasmas. The skin depth is given by

δ =
c

ω

1√
4πne2

mω2 − 1
. (a.5)

‘óπερ ’έδει πoι�ησαι

1The point at which k becomes real for copper (in this approximation, which is crude) is 2.6× 1015 Hz.
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Before we move on, we are to calculate the skin depth of copper in this approximation,
using real numbers—a headache to most theorists. To do this we need to choose a
consistent set of units. I will use the units for which

e2 = 1.907× 10−72 m2 me = 6.764× 10−58 m.

These work out quite well and one finds that

δCu = 19 nm. (a.6)

b) We are now asked to generalize our work above to the situation where there is scattering in gen-
eral. We should simplify our expressions as much as possible by keeping only leading terms in ω/ωp and
1/(ωpτ). We are to determine the resulting electric fields for the situation of part a above, calculate the
absorption coefficient and plot this as a function of ωτ .

Just in case the grader is keeping a tally, please notice that our solution for the full
electric field pattern in part a above did not depend on the assumption that there
was no scattering, so the result applied exactly.

Before we begin, we should comment that we have found nothing slight of horrendous
in this problem. There is little elegance, and in general, everything becomes messy
very fast. Let us just clarify our starting point and our goal: we know that in the
Drude model

ε(ω) = 1 +
iω2

pτ

ω(1− iωτ)
, (b.1)

and from our course in electrodynamics so many years ago2 that the absorption
coefficient is given by

T =
4Re {√ε}
|1 +

√
ε|2

. (b.2)

Let us now begin. We will make repeated use of the fact that ωpτ À 1 and ωp/ω À 1.
The first instance of this appears in the third line, if you’re paying attention. To
simplify life a lot, we will define the parameter ξ so that sinh ξ = ωτ .

ε = 1 +
iω2

pτ

ω(1− iωτ)
(1 + iωτ)
(1 + iωτ)

,

= 1− ω2
pτ2

1 + sinh2 ξ

{
1− i

sinh ξ

}
,

≈ − ω2
pτ2

cosh2 ξ

{
1− i

sinh ξ

}
,

=
ω2

pτ2

cosh ξ sinh ξ
ei(θ+π).

In the last line, we used some hyperbolic trigonometric identities normalizing ε where
we have defined the phase θ = Arg {1− i/ sinh ξ} = arctan(1/ωτ).

Now before we jump through the last hoops, it is useful to notice right now that
Re {√ε} ∝ ωpτ , so if we are keeping things to order 1/(ωpτ), then we need only
look at terms in the denominator of the expression for T that are second order at
least. Indeed, this means we can drop the 1 + 2Re {√ε} bit from the denominator,
simplifying life enormously. Okay, so with that big approximation made clear, we see
directly that

T =
4Re {√ε}
|1 +

√
ε|2

≈ 4Re {√ε}
|ε| ,

=
4ωpτ√

cosh ξ sinh ξ
cos

(
1
2
(π − arctan(1/ωτ))

) (
ω2

pτ2

cosh ξ sinh ξ

)−1

,

2It is not really necessary to quote the result, because considering that the power is ε
2
|E|2, this expression is fairly

obvious from our work in part a.
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Figure 1. The absorption coefficient T as a function of ωτ as estimated in problem (1.b).

∴ T ' 4
ωpτ

√
ωτ

√
1 + ω2τ2 cos

(
1
2
(π − arctan(1/ωτ))

)
. (b.3)

This is shown in Figure 1.

c) We are to compute the skin depth of copper for τ = 2.7×10−14 sec using our work above at various
frequencies.

From our work above in part b it we can easily see that (in the approximation used
there)

Im
{√

ε
}

=
ωpτ√

ωτ
√

1 + ω2τ2
sin

(
1
2
(π − arctan(1/ωτ))

)
, (c.1)

which allows us to write the skin depth

δ =
c

ω

1
Im {√ε} . (c.2)

Using Mathematica so I wouldn’t make any silly mistakes, I found the following:

δCu(60 Hz) = 8.08 mm δCu(1010 Hz) = 0.625µm δCu(6× 1014 Hz) = 18.2 nm. (c.3)
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Problem 2
We are to modify the Sommerfeld theory of electrical and thermal conductivity to incorporate two

disparate types of scattering events: those with a relaxation time of τv which are elastic but thermally
randomize the direction of an electron’s velocity; and those with a relaxation time of τe which fully
equilibrate the electron’s energy to thermal equilibrium while leaving the speed and direction of the elec-
tron unchanged. This is perfectly valid in the limit of temperatures well below the Fermi temperature,
because in that case virtually all of the ‘effective’ conduction electrons are on the Fermi surface and have
velocity vF .

a) We are to compute the electrical conductivity in this two-scattering generalization of the Sommer-
feld model.

There are various ways we could make this a bit more rigorous, but our intuition strongly
argues that the scatterings which leave the direction of motion unchanged will not
contribute to resistance. Indeed, if one were to follow the same type of analysis we
did in the one-scattering case, we would find the average velocity at a time dt to be
given by

〈~v(dt)〉 =
(

1− dt

τv

) (
1− dt

τe

) (
〈~v(t = 0)〉 − e ~E

)
+

dt

τe
〈~v(t = 0)〉+O(dt2), (a.1)

where the last term is added because with a probability of dt
τe

during the interval dt
the electrons can scatter via these inelastic pathways which do not alter the velocity.
A quick glance at the equation above shows that this cancels the resistive force
caused by the τe scattering, so there is no change to our derivation of the electrical
conductivity in the original model. Therefore, we see that

σ =
ne2τv

m
. (a.2)

b) We are to compare thermal conductivity in this model with the original Sommerfeld model.

Unfortunately, we will need to work a little less rigourously than we would otherwise
prefer. Most of the results we can more-or-less guess by considering the symmetries
and limits than any solution must have; indeed, it is easy to see that if 1/τe → 0 the
thermal conductivity will vanish, and similarly if τv → 0; in the first case there are
too few inelastic scatterings to transport information about temperature gradients,
and in the latter case any thermally interesting transport is washed out by rapid
elastic scattering.

Let us first compute the expected scattering time for the combined, independent scat-
tering processes. This is rather straightforward: notice that the probability for an
electron to survive until a time t without scattering elastically is e−t/τv and the
probability to survive until a time t without scattering ‘thermally’ is e−t/τe . Be-
cause these are independent random variables, the probability to survive to a time
t without any collision is simply the product, or e−t τe+τv

τeτv . For this, the differential
probability of not scattering is τe+τv

τeτv
e−t τe+τv

τeτv ; and from here the evaluation of an
elementary integral shows that the expected time between collisions is

〈t〉 =
τeτv

τe + τv
. (a.1)

This of course satisfies our intuition because when one of τe or τv is small, it will always
dominate: if on process is much more rapid, the other can be effectively ignored.
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Now, a correct derivation would begin by using the fact that only the inelastic scatterings
will contribute to the thermal current. One would find something along the lines of

j =
n

2
η
vF

3
[ε(T (x = −vF τe))− ε(T (x = vF τe))] ,

=
n

2
η
vF

3

[
ε(T (x = 0))− vF τe

∂ε

∂T

∂T

∂x
− ε(T (x = 0))− vF τe

∂ε

∂T

∂T

∂x
+ . . .

]
,

= −η
v2

F

3
τe

(
n

∂ε

∂T

)
∇xT,

= ητe
v2

F

3
cv,

=
2εF

3m
ητe

π2

2
n

k2
BT

εF
,

=
π2

3
ητek

2
BT

m
,

where we have introduced the parameter η which parameterizes our ignorance (not
fundamentally, just the ignorance of the author): η represents the fraction of electrons
arriving at x from a given side such that their last scattering was inelastic. A good
guess for η would be3

η =?
τv

τv + τe
. (a.2)

At least it has the right properties and limits. If this were the case, then we would
find

κ

σT
=

1
3

π2k2
B

e2

τe

τe + τv
. (a.3)

3Note added in revision: this is the right answer.


